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POWER INEQUALITY ON THE SIMPLEX

In-Soo Baek*

Abstract. The power inequality
∏N

k=1 x
xk
k ≥ ∏N

k=1 p
xk
k holds for

the points (x1, ..., xN ),(p1, ..., pN ) of the simplex. We show this
using the analytic method combining Frostman’s density theorem
with the strong law of large numbers.

1. Introduction

The power inequality on the simplex is sometimes interesting by itself.
Recently, we([1]) studied the Hausdorff dimensions of the local dimension
sets and the distribution sets of a self-similar Cantor set using the strong
law of large numbers together with the Frostman’s density theorem. This
can be also generalized to the dimensions of the the local dimension sets
and the distribution sets of a self-similar set([3]). The self-similar set is
a generalized form of the self-similar Cantor set in the sense that the
self-similar set is generated by N similarities with an integer N ≥ 2
while the self-similar Cantor set is generated by 2 similarities. The
main idea to get these results is that the distribution set gives the exact
local dimension for the self-similar measure on the self-similar set. The
connection between the distribution set and the local dimension set of
the self-similar set is that the frequencies of digits of the N -ary code
which corresponds to a point of the self-similar set can be transformed
into the log-density of the probability of the cylinder of the code by its
diameter. We use the strong law of large numbers for the lower bound
for the Hausdorff dimension of the distribution set which is contained
in the local dimension set. In this paper, we give some constraint which
generates a hyperplane of the simplex. This constraint plays a role
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for the distribution set to be a subset of the local dimension set of
the self-similar measure or the probability on the self-similar set. The
monotonicity of the Hausdorff dimension gives our essential inequality.
That is, the points of the hyperplane by a constraint of the simplex
satisfy our essential inequality, which gives the power inequality. Our
result is a byproduct of the study([3]) of the relation between the local
dimension set and distribution set of the self-similar set.

2. Preliminaries

Let N and R be the set of positive integers and the set of real numbers
respectively. An attractor K in the d-dimensional Euclidean space Rd of
the iterated function system(IFS) (f1, ..., fN ) of contractions where N ≥
2 makes each point q ∈ K have an infinite sequence ω = (m1, i2, ...) ∈
Σ = {1, ..., N}N where

{q} =
∞⋂

n=1

Kω|n

for Kω|n = Km1,...,mn = fm1 ◦ · · · ◦ fmn(K)([2, 4, 5]). In such case, we
sometimes write π(ω) for such q using the natural projection π : Σ → K
and write cn(q) for such Kω|n. We call such cn(q) n-th cylinder of K
and |cn(q)| denotes the diameter of cn(q) and we also call ω the code of
q.

Consider a probability vector p = (p1, ..., pN )([5]). Each infinite
sequence ω = (m1,m2, ...) has the unique subset A(yn(ω)) of its ac-
cumulation points in the simplex of probability vectors in RN of the
vector-valued sequence {yn(ω)} = {(p1, ..., pN )n} of the probability vec-
tors where pk for 1 ≤ k ≤ N in the probability vector (p1, ..., pN )n for
each n ∈ N is defined by

pk =
|{1 ≤ l ≤ n : ml = k}|

n
.

Sometimes we write nk(ω|n) for such pk. dim(E) denotes the Hausdorff
dimension of E([4]). For the self-similar measure γp on K associated
with p = (p1, ..., pN ) ∈ (0, 1)N satisfying

∑N
i=1 pi = 1, we write E

(p)
α

∗

for the set of points at which the local dimension of γp on K is exactly
α, so that

E(p)
α

∗
= {q ∈ K : lim

r→0

log γp(Br(q))
log r

= α}. (1)
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We call {E(p)
α

∗
(6= φ) : α ∈ R} the spectral class generated by the local

dimensions of a self-similar measure γp. We call α an associated local
dimension of γp. We define the cylinder local dimension set

E(p)
α = {q ∈ K : lim

n→∞
log γp(cn(q))
log |cn(q)| = α}. (2)

It is well-known([1, 2, 5]) that if the IFS (f1, ..., fN ) satisfies the strong
separation condition(SSC) then

E(p)
α

∗
= E(p)

α .

In this paper, we assume that the IFS satisfies the strong separation
condition (SSC)([2, 4, 5]). We mainly discuss the cylinder local dimen-
sion sets E

(p)
α instead of E

(p)
α

∗
for studying the attractor K of the IFS

satisfying SSC since the cylinder local dimension sets are quite closely
related to the distribution sets. In this paper, we assume that 0 log 0 = 0
for convenience.

3. Main results

We have the following essential inequality for the points of the hyper-
plane(by a constraint) of the simplex. We note that there is no measure
theoretical assumption in the Theorem. However we use the multifrac-
tal or measure theoretical technique to prove this theorem. We arrange
some Lemma and Propositions after this Theorem to emphasize this.

Theorem 3.1. Let (p1, ..., pN ), (a1, ..., aN ) ∈ [0, 1]N and
∑N

k=1 pk =
1.

For (x1, ..., xN ) ∈ [0, 1]N with
∑N

k=1 xk = 1 satisfying the equation
∑N

k=1 xk log pk∑N
k=1 xk log ak

=
∑N

k=1 pk log pk∑N
k=1 pk log ak

, (3)

we have ∑N
k=1 xk log xk∑N
k=1 xk log ak

≤
∑N

k=1 pk log pk∑N
k=1 pk log ak

. (4)

Proof. It suffices to show that it holds for (p1, ..., pN ), (a1, ..., aN ),
(x1, ..., xN ) ∈ (0, 1)N with

∑N
k=1 pk =

∑N
k=1 xk = 1. Let

p = (p1, ..., pN ),

x = (x1, ..., xN ).
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Define

g(x,p) =
∑N

k=1 xk log pk∑N
k=1 xk log ak

. (5)

We only need to show that if g(x,p) = g(p,p), then g(x,x) ≤ g(p,p).
It follows from our last Proposition.

From now on, we assume that the similarity ratios of the similarities
(f1, ..., fN ) are a1, ..., aN ∈ (0, 1) and K is the self-similar set for the
IFS (f1, ..., fN ) and γp on K is the self-similar measure associated with
p = (p1, ..., pN ) ∈ (0, 1)N satisfying

∑N
k=1 pk = 1.

Lemma 3.2. If E(⊂ K) satisfies γp(E) > 0 and limn→∞
log γp(cn(q))

log |cn(q)| =
α for all q ∈ E, then dim(E) = α.

Proof. It follows from the Frostman’s density theorem([4]).

Proposition 3.3. Let the distribution set

F (x) = {ω : lim
n→∞nk(ω|n) = xk, 1 ≤ k ≤ N}. (6)

Then
dim(π(F (x))) = g(x,x).

Further
dim(E(p)

g(p,p)) = g(p,p).

Proof. γx(π(F (x))) = 1 follows from the strong law of large numbers
and

lim
n→∞

log γx(cn(q))
log |cn(q)| = g(x,x)

for all q ∈ π(F (x)). For, since q = π(ω) where ω ∈ F (x),

log γx(cn(q))
log |cn(q)| =

∑N
k=1 nk(ω|n) log xk∑N
k=1 nk(ω|n) log ak

,

so

lim
n→∞

log γx(cn(q))
log |cn(q)| =

limn→∞
∑N

k=1 nk(ω|n) log xk

limn→∞
∑N

k=1 nk(ω|n) log ak

= g(x,x),

from (5). Similarly
π(F (p)) ⊂ E

(p)
g(p,p),

which gives γp(E(p)
g(p,p)) = 1. By the definition of (2),

lim
n→∞

log γp(cn(q))
log |cn(q)| = g(p,p)
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for all q ∈ E
(p)
g(p,p). It follows from the above Lemma.

Remark 3.4. We note that in (6)

F (x) = {ω : A(yn(ω)) = {x}}.
Proposition 3.5. If (3) is satisfied, then

π(F (x)) ⊂ E
(p)
g(p,p).

Further
g(x,x) ≤ g(p,p).

Proof. π(F (x)) ⊂ E
(p)
g(p,p) follows from the assumption g(x,p) =

g(p,p). It follows from the above Proposition.

Remark 3.6. x satisfying the condition (3) form a hyperplane of the
simplex except for p = ps ≡ (as

1, ..., a
s
N ) where

∑N
k=1 as

k = 1. That is,
by the definition of (5), {x : g(x,p) = g(p,p)} is a hyperplane of the
simplex except for the singular point p = ps. For p = ps, the condition
(3) is not a constraint but a tautology. However the inequality (4) still
holds for whole points x of the simplex. We also note that

max{g(x,x) : g(x,p) = g(p,p)} = g(p,p).

Our essential inequality (4) gives the following power inequality which
is our main Theorem.

Theorem 3.7. For the points (x1, ..., xN ), (p1, ..., pN ) of the (N −1)-
simplex, that is, for (x1, ..., xN ), (p1, ..., pN ) ∈ [0, 1]N with

∑N
k=1 xk =∑N

k=1 pk = 1, we have
N∏

k=1

xxk
k ≥

N∏

k=1

pxk
k . (7)

Proof. For (p1, ..., pN ), (x1, ..., xN ) ∈ [0, 1]N with
∑N

k=1 pk =
∑N

k=1 xk

= 1, it is not difficult to show that there is (a1, ..., aN ) ∈ (0, 1)N such
that g(x,p) = g(p,p), where g(x,p) is defined by (5) for

p = (p1, ..., pN ),

and
x = (x1, ..., xN ).

From (3) and (4), we have
∑N

k=1 xk log xk∑N
k=1 xk log ak

≤
∑N

k=1 pk log pk∑N
k=1 pk log ak

=
∑N

k=1 xk log pk∑N
k=1 xk log ak

.
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This gives the inequality
N∑

k=1

xk log xk ≥
N∑

k=1

xk log pk (8)

since
∑N

k=1 xk log ak < 0. (7) follows from (8).
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